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ECON 4130  H11 

Extra exercises for no-seminar week 41 
(Solutions will be put on the net at the end of the week) 
 
 

Introduction:    Review of multidimensional distributions 
(This summarizes what you basically need to know about joint distributions in this course.) 
 
In the lectures I have only talked about joint two-dimensional distributions, but everything 
mentioned about them generalizes straightforward to higher dimensions. For the sake of 
completeness I review the basics here (Rice is a bit vague on this): 
 
If  1 2, , , nX X X are rv’s, their joint cdf is defined by 
 
 1 2 1 1 2 2( , , , ) ( )n n nF x x x P X x X x X x= ≤ ∩ ≤ ∩ ∩ ≤   
 
The corresponding joint pdf or pmf is defined by 
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In the continuous case we have: [Note that everything below hold for discrete distributions as 
well, replacing integrals by sums and pdf’s by pmf’s.] 
  
The cdf is determined by the pdf by 
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calculated by starting from the innermost integral and working out step by step outwards each 
single integral.  
 
The marginal joint pdf for any sub-collection of rv’s is obtained by integrating away all the 
other variables. To simplify notation consider the four rv’s, , , ,X Y Z U with pdf ( , , , )f x y z u . 
For example, the marginal pdf’s of Y and ( , , )X Z U are respectively 
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The expectation of any function,  ( , , , )g X Y Z U , of , , ,X Y Z U  can be found as before 
 

 [ ]( , , , ) ( , , , ) ( , , , )E g X Y Z U g x y z u f x y z u dxdydzdu
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

= ∫ ∫ ∫ ∫  

 
whenever the integral exists. 
 
The conditional distribution of Y keeping ( , , )X Z U fixed to the numbers ( , , )x z u  is 
determined by the conditional pdf defined (just as in the two-dimensional case) by 
 

(1) 
2

( , , , )( | , , )
( , , )

f x y z uf y x z u
f x z u

=  

 
Note that this describes a one-dimensional distribution of Y where , ,x z u  appear as 
parameters. 
 
The conditional expected value of Y in (1), sometimes called the regression function of Y with 
respect to ( , , )X Z U , and the conditional variance of Y in (1) are functions of  ( , , )x z u  
 
 2( , , ) ( | , , ),         ( , , ) var( | , , )x z u E Y x z u x z u Y x z uµ σ= =  
 
The law of total expectation (also called “the law of double expectation”) holds in general 
(same proof as in the two-dimensional case): 
 
 [ ] [ ]( ) ( | , , ) ( , , )E Y E E Y X Z U E X Z Uµ= =  
 

[ ] [ ] [ ]2var( ) var( | , , ) var ( | , , ) ( , , ) var ( , , )Y E Y X Z U E Y X Z U E X Z U X Z Uσ µ = + = +   
 
If 1 2, , , nX X X are independent, the joint pdf (as well as the joint cdf) can be factorized into a 
product of the marginal pdf’s (cdf’s): 
 
(2)
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Similarly, the expectation of the product 1 2 nX X X  factorizes under independence: 
 
(3) 1 2 1 2( ) ( ) ( ) ( )n nE X X X E X E X E X=   
 
If 1 2, , , nX X X are independent, the mgf (if it exists) of the sum, 1 2 nS X X X= + + + , can 
also be factorized into the product of the individual mgf’s: 
 
(4) 
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which follows directly from (3) as shown in the lecture for the case 2n = . 
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A remark on modelling:  To model a joint pdf (or pmf) like (e.g.) ( , , , )f x y z u  directly is 
often difficult because of our common lack of intuition on the complete joint behaviour. Since 
it is usually easier to model one-dimensional distributions than multidimensional ones, the 
task is often accomplished by decomposing the joint pdf (pmf) into a product of one-
dimensional pdf’s (pmf’s) – which is always possible due to (1). For example, in the 2-
dimensional case, using (1), we have1

 
 

 ( , ) ( | ) ( )f x y f y x f x=  
 
and in the 4-dimensional case, using (1) several times,  
 

 
( , , , ) ( | , , ) ( , , ) ( | , , ) ( | , ) ( , )

                  ( | , , ) ( | , ) ( | ) ( )
f x y z u f y x z u f x z u f y x z u f x z u f z u

f y x z u f x z u f z u f u
= = =
=



 

 
A nice example of this principle you can find in the exercise (seminar week 40) on the 
ROSCA in Nairobi concerning the distribution of  ( , )V X . There the marginal distribution of 
V is modelled as discrete uniform over 1, 2, , n , and the conditional distribution of X, given 
V v= , is modelled as binomial ( 1, )v p− . From this, if needed, we get the full joint pmf of 
( , )V X : 
 

 

111 (1 ) for 0,1, , 1 and 2,3, ,
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1        for 0 and 1                              
             0                          otherwise
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  = 
= =



 

 

 
We would need this, e.g., to derive the marginal distribution of X, which is slightly 
complicated and not binomial(!). Luckily, in this case, we don’t need the marginal distribution 
of X to derive the expected value, ( )E X . Much simpler is to use the law of total expectation 
as in the exercise. So, in this case we don’t need to bother about the (complicated) joint 
distribution at all to answer our questions of interest. 
 
 
 
 

Exercise 1 
 
Let 1 2, , , nX X X  be iid and each exponentially distributed, ~ exp( )iX λ . Use (3) above to 

prove that for any n, the mean, 
1

1 n

i
i

X X
n =

= ∑ , is exactly gamma-distributed. Identify the 

parameters in this distribution expressed by  and nλ . 

                                                 
1 In the following expressions I have used the function symbol, f, generically in the sense that the various f’s 
represent different functions. It is the structure of the arguments that determines which function we are talking 
about. This artefact is sometimes used in mathematical texts to simplify notation. 
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  [Hint. Identify first the gamma-distribution for 
1

n

i
i

S X
=

= ∑  using (3).  Then find the 

distribution of 1X S
n

= .] 

 
 

Exercise 2 
Let 1 2, , , nX X X  be iid and each normally distributed, 2~ ( , )iX N µ σ , where 

2( ), var( )i iE X Xµ σ= = . In this exercise we will compare three estimators of 2σ : 
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a. Put  2

1
( )

n

i
i

V X X
=

= −∑ . Using the linearity of the ∑ - operator, show that 

 

  2 2 2

1 1
( )

n n

i i
i i

V X X X nX
= =

= − = −∑ ∑  

 
 [Hint:  Remember that sums (like integrals) have linearity properties like, for 

example,  
 

  
1 1 1
( )

n n n

i i i i
i i i

a bx cy na b x c y
= = =

+ + = + +∑ ∑ ∑  

 
 where a, b, c are numbers not depending on i.  ] 
 
 

b. Use supplementary exercise 4 and the fact that 2

V
σ

 is 2
1nχ − - distributed to show that 

2 2ˆ Sσ =  is unbiased (i.e., 2 2( )E S σ= ), and has variance 
 

  
4

2 2 2ˆvar( ) var( )
1

S
n
σσ = =
−

 

 
c. Show that both 2ˆ , 1,2k kσ = , are biased downwards, i.e., 2 2ˆ( ) , 1,2k kE c kσ σ= = , 
where both 1kc < . Find 1 2,c c  and explain why both estimators satisfy, 2 2ˆ( )kE σ σ→  when 



 5 

n →∞ . (This property is usually expressed by saying that both estimators are asymptotically 
unbiased). 
 
 
d. Gross variance. 
 
There are many different ways to compare estimators. In the basic course you learned to 
compare unbiased estimators by the much used criterion:  
 

For two different unbiased estimators of the same parameter, choose the one with 
smallest variance. 

 
This criterion is useless in our situation where some of the estimators are biased. However, it 
is easy to generalize it by using (instead of variance) the mean squared estimation error. Let 
θ̂  be an estimator of some unknown parameter, θ . Then the mean squared estimation error 
(also called “gross variance” or “brutto-varians” in Norwegian) is defined by 
 
 2ˆ ˆGVar( ) ( )Eθ θ θ = −   

 
(i) Explain why ˆ ˆGVar( ) Var( )θ θ=  whenever θ̂  is unbiased. 
 
(ii) Show in general that, when the variances exist, we have 
 

(4) ( )2
2ˆ ˆ ˆ ˆGVar( ) ( ) Var( ) ( )E Eθ θ θ θ θ θ = − = + −   

 

 [Hint:  Add and subtract ˆ( )E θ  inside 
22ˆ ˆ ˆ ˆ( ) ( ) ( )E Eθ θ θ θ θ θ − = − + −  , and 

execute the squaring. ] 
 
 
 
Our extended criterion is now 
 
(5) For two different estimators (not necessarily unbiased) for the same parameter, choose 

the one with smallest mean squared error. 
 
 
e. Show, using (4), that 2 2

1ˆ ˆGVar( ) GVar( )σ σ< .  
Hence 2

1σ̂ is preferable to 2σ̂ according to criterion (5).  
[Note that 2

1σ̂ is the same as the so called maximum likelihood estimator, as you will see later 
in the course.] 
 
 
f. Defining an estimator, 2 2

c cSσ = , for any constant 0c > , we obtain a whole class of 
potential estimators of 2σ . Show that c minimizing 2GVar( )cσ  is given by  
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−
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Hence, 2 2

2ˆcσ σ= is the optimal estimator of 2σ in this class - according to criterion (5). 
 
[Hint:  Minimize the expression you get with respect to c after using (4) on 2GVar( )cσ .] 
 
 
 
 
g. Prove the following result (which implies that all three estimators for 2σ  are 

consistent): 
 
 Let ˆ , 1,2,n nθ =   be a sequence of asymptotically unbiased estimators for θ  

with variances that converge to zero when n →∞ . Then n̂θ  is a consistent 

estimator for θ  (i.e., ˆ
P

n
n

θ θ
→∞
→ ).  

 
 [Hint:  Show first, using Markov’s inequality, that, if ˆGVar( ) 0n n

θ
→∞
→ , then 

ˆ
P

n
n

θ θ
→∞
→ .  Then use (4) to deduce the result asked for. ] 

 
 
[Note.   In econometrics we operate with several concepts of “biasedness/unbiasedness” of an 
estimator. In this course you learn two concepts, i.e.,  “(un)biasedness” and “(in)consistency”: 
If n̂θ  is an estimator of θ , we say that 
 

• n̂θ  is unbiased (biased) if  ˆ( )nE θ θ=   ( ˆ( )nE θ θ≠ ) 

• n̂θ  is consistent (inconsistent) if ˆplim( )n
n

θ θ
→∞

=    ( ˆplim( )n
n

θ θ
→∞

≠ ) 

 
These two concepts are not equivalent. Unbiasedness does not in general imply consistency, 
and consistency does not in general imply unbiasedness. Unbiasedness is a property of n̂θ for 

a single given n, while consistency is a property of the whole sequence, ˆ , 1, 2,n nθ =    On 
the other hand, consistency has wider applicability than unbiasedness because of the 
continuity property (if n̂θ  is consistent for θ , then ˆ( )ng θ  is consistent for ( )g θ  whenever 

( )g x  is a continuous function), a property not shared by the unbiased-concept (even if 
ˆ( )nE θ θ= , then quite often ˆ( ) ( )nEg gθ θ≠  - except when g is linear ( ( )g x a bx= + )).  ] 
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